RECQL4 Promotes DNA End Resection in Repair of DNA Double-Strand Breaks.

نویسندگان

  • Huiming Lu
  • Raghavendra A Shamanna
  • Guido Keijzers
  • Roopesh Anand
  • Lene Juel Rasmussen
  • Petr Cejka
  • Deborah L Croteau
  • Vilhelm A Bohr
چکیده

The RecQ helicase RECQL4, mutated in Rothmund-Thomson syndrome, regulates genome stability, aging, and cancer. Here, we identify a crucial role for RECQL4 in DNA end resection, which is the initial and an essential step of homologous recombination (HR)-dependent DNA double-strand break repair (DSBR). Depletion of RECQL4 severely reduces HR-mediated repair and 5' end resection in vivo. RECQL4 physically interacts with MRE11-RAD50-NBS1 (MRN), which senses DSBs and initiates DNA end resection with CtIP. The MRE11 exonuclease regulates the retention of RECQL4 at laser-induced DSBs. RECQL4 also directly interacts with CtIP via its N-terminal domain and promotes CtIP recruitment to the MRN complex at DSBs. Moreover, inactivation of RECQL4's helicase activity impairs DNA end processing and HR-dependent DSBR without affecting its interaction with MRE11 and CtIP, suggesting an important role for RECQL4's unwinding activity in the process. Thus, we report that RECQL4 is an important participant in HR-dependent DSBR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks

DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...

متن کامل

Residual DNA double strand breaks correlates with excess acute toxicity from radiotherapy

Introduction: A high risk for development of severe side effects after radiotherapy may be correlated with high cellular radiosensitivity. To enhance radiation therapy efficiency a fast and reliable in-vitro test is desirable to identify radiosensitive patients. The aim of present study was to identify the mechanism of radiation induced DNA double-strand breaks (DSBs) and DSB r...

متن کامل

Dysfunctional Telomeres The Role of Double-Strand Break Repair Pathways at Functional and Subject Collection DNA Recombination at Functional and Dysfunctional Telomeres The Role of Double-Strand Break Repair Pathways

Meets DNA Transcription and Recombination: When RNA Andrés Aguilera and Hélène Gaillard Mechanism and Regulation End Resection at Double-Strand Breaks: Lorraine S. Symington Resection in Homologous Recombination Structural Studies of DNA End Detection and Christian Linke-Winnebeck, et al. Christian Bernd Schiller, Florian Ulrich Seifert, The Dissolution of Double Holliday Junctions Anna H. Biza...

متن کامل

RECQ helicase RECQL4 participates in non-homologous end joining and interacts with the Ku complex.

RECQL4, a member of the RecQ helicase family, is a multifunctional participant in DNA metabolism. RECQL4 protein participates in several functions both in the nucleus and in the cytoplasm of the cell, and mutations in human RECQL4 are associated with three genetic disorders: Rothmund-Thomson, RAPADILINO and Baller-Gerold syndromes. We previously reported that RECQL4 is recruited to laser-induce...

متن کامل

Replication protein A promotes 5′→3′ end processing during homology-dependent DNA double-strand break repair

Replication protein A (RPA), the eukaryotic single-strand deoxyribonucleic acid (DNA [ss-DNA])-binding protein, is involved in DNA replication, nucleotide damage repair, mismatch repair, and DNA damage checkpoint response, but its function in DNA double-strand break (DSB) repair is poorly understood. We investigated the function of RPA in homology-dependent DSB repair using Xenopus laevis nucle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell reports

دوره 16 1  شماره 

صفحات  -

تاریخ انتشار 2016